Inegalitatea lui Chebyshev spune că cel puțin 1 -1 /K2 datele dintr-un eșantion trebuie să se încadreze K abateri standard de la medie, unde K este orice număr real pozitiv mai mare decât unul. Aceasta înseamnă că nu trebuie să cunoaștem forma distribuției datelor noastre. Cu doar media și abaterea standard, putem determina cantitatea de date dintr-un anumit număr de abateri standard față de medie.
Următoarele sunt câteva probleme pentru a exersa folosind inegalitatea.
O clasă de gradații secundare are o înălțime medie de cinci metri, cu o abatere standard de un centimetru. Cel puțin procentul clasei trebuie să fie între 4’10 ”și 5’2”?
Înălțimile date în intervalul de mai sus se încadrează în două abateri standard de la înălțimea medie de cinci metri. Inegalitatea lui Chebyshev spune că cel puțin 1 - 1/22 = 3/4 = 75% din clasă se află în domeniul de înălțime dat.
Calculatoarele de la o anumită companie se mențin în medie timp de trei ani fără o defecțiune hardware, cu o abatere standard de două luni. Cel puțin ce procent din calculatoare durează între 31 de luni și 41 de luni?
Durata medie de viață de trei ani corespunde la 36 de luni. Timpurile de la 31 luni la 41 de luni sunt fiecare 5/2 = 2,5 abateri standard de la medie. Prin inegalitatea lui Chebyshev, cel puțin 1 - 1 / (2.5) 62 = 84% dintre calculatoare durează de la 31 de luni la 41 de luni.
Bacteriile dintr-o cultură trăiesc timp mediu de trei ore cu o abatere standard de 10 minute. Cel puțin ce fracție din bacterii trăiește între două și patru ore?
Două și patru ore sunt la fiecare oră distanță față de medie. O oră corespunde șase abateri standard. Deci cel puțin 1 - 1/62 = 35/36 = 97% din bacterii trăiesc între două și patru ore.
Care este cel mai mic număr de abateri standard de la media pe care trebuie să o parcurgem dacă vrem să ne asigurăm că avem cel puțin 50% din datele unei distribuții?
Aici folosim inegalitatea lui Chebyshev și lucrăm înapoi. Vrem 50% = 0,50 = 1/2 = 1 - 1 /K2. Scopul este de a folosi algebra pentru a rezolva K.
Vedem că 1/2 = 1 /K2. Înmulțiți cruce și vedeți că 2 =K2. Luăm rădăcina pătrată a ambelor părți și de când K este o serie de abateri standard, ignorăm soluția negativă a ecuației. Asta arată că K este egală cu rădăcina pătrată a două. Așadar, cel puțin 50% din date se află în aproximativ 1,4 abateri standard de la medie.
Ruta autobuzului # 25 durează în medie 50 de minute cu o abatere standard de 2 minute. Un afiș promoțional pentru acest sistem de autobuz prevede că „95% din timpul autobuzului nr. 25 durează de la ____ la _____ minute.” Cu ce numere ați completa completurile cu?