Care este formula Rydberg și cum funcționează?

Formula Rydberg este o formulă matematică utilizată pentru a prezice lungimea de undă a luminii rezultate dintr-un electron care se mișcă între nivelurile de energie ale unui atom.

Când un electron se schimbă de la un orbital atomic la altul, energia electronului se schimbă. Când electronul se schimbă de la un orbital cu energie mare la o stare de energie mai mică, se creează un foton de lumină. Când electronul trece de la o energie scăzută la o stare de energie mai mare, un foton de lumină este absorbit de atom.

Fiecare element are o amprentă spectrală distinctă. Când starea gazoasă a unui element este încălzită, acesta va da lumină. Când această lumină este trecută printr-o prismă sau o grătare de difracție, se pot distinge linii strălucitoare de diferite culori. Fiecare element este ușor diferit de celelalte elemente. Această descoperire a fost începutul studiului spectroscopiei.

Ecuația lui Rydberg

Johannes Rydberg a fost un fizician suedez care a încercat să găsească o relație matematică între o linie spectrală și următoarea dintre anumite elemente. El a descoperit în cele din urmă că există o relație întreagă între corpurile de linie succesive.

Descoperirile sale au fost combinate cu modelul lui Bohr al atomului pentru a crea această formulă:

1 / λ = RZ2(1 / n12 - 1 / n22)

Unde

λ este lungimea de undă a fotonului (numărul de undă = 1 / lungimea de undă)
R = constanta lui Rydberg (1.0973731568539 (55) x 10)7 m-1)
Z = numărul atomic al atomului
n1 si n2 sunt numere întregi unde n2 > n1.

Ulterior s-a constatat că n2 si n1 au fost legate de numărul cuantic principal sau numărul cuantic de energie. Această formulă funcționează foarte bine pentru tranzițiile între nivelurile de energie ale unui atom de hidrogen cu un singur electron. Pentru atomii cu mai mulți electroni, această formulă începe să se descompună și să dea rezultate incorecte. Motivul inexactității este că cantitatea de screening pentru electronii interiori pentru tranzițiile electronilor externi variază. Ecuația este prea simplistă pentru a compensa diferențele.

Formula Rydberg poate fi aplicată hidrogenului pentru a obține liniile sale spectrale. Setarea n1 la 1 și alergând n2 de la 2 la infinit cedează seria Lyman. Se pot determina și alte serii spectrale:

n1 n2 Converg spre Spre Nume
1 2 → ∞ 91,13 nm (ultraviolete) Seria Lyman
2 3 → ∞ 364,51 nm (lumină vizibilă) Seria Balmer
3 4 → ∞ 820.14 nm (infraroșu) Seria Paschen
4 5 → ∞ 1458,03 nm (infraroșu îndepărtat) Seria Brackett
5 6 → ∞ 2278.17 nm (infraroșu îndepărtat) Seria Pfund
6 7 → ∞ 3280,56 nm (infraroșu îndepărtat) Seria Humphreys

Pentru cele mai multe probleme, vă veți ocupa de hidrogen, astfel încât să puteți utiliza formula:

1 / λ = RH(1 / n12 - 1 / n22)

unde RH este constanta lui Rydberg, deoarece Z-ul hidrogenului este 1.

Exemplu de problemă funcționat cu formula Rydberg

Găsiți lungimea de undă a radiației electromagnetice care este emisă de un electron se relaxează de la n = 3 la n = 1.

Pentru a rezolva problema, începeți cu ecuația Rydberg:

1 / λ = R (1 / n12 - 1 / n22)

Acum conectați valorile, unde n1 este 1 și n2 este 3. Utilizați 1.9074 x 107 m-1 pentru constanta lui Rydberg:

1 / λ = (1.0974 x 10)7) (1/12 - 1/32)
1 / λ = (1.0974 x 10)7) (1 - 1/9)
1 / λ = 9754666,67 m-1
1 = (9754666,67 m-1) λ
1 / 9754666.67 m-1 = λ
λ = 1.025 x 10-7 m

Rețineți că formula oferă o lungime de undă în metri folosind această valoare pentru constanta lui Rydberg. Adesea vi se va cere să oferiți un răspuns în nanometre sau Angstroms.